Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Cancer Inform ; 23: 11769351231223806, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322427

RESUMO

Large-scale, multi-site collaboration is becoming indispensable for a wide range of research and clinical activities in oncology. To facilitate the next generation of advances in cancer biology, precision oncology and the population sciences it will be necessary to develop and implement data management and analytic tools that empower investigators to reliably and objectively detect, characterize and chronicle the phenotypic and genomic changes that occur during the transformation from the benign to cancerous state and throughout the course of disease progression. To facilitate these efforts it is incumbent upon the informatics community to establish the workflows and architectures that automate the aggregation and organization of a growing range and number of clinical data types and modalities ranging from new molecular and laboratory tests to sophisticated diagnostic imaging studies. In an attempt to meet those challenges, leading health care centers across the country are making steep investments to establish enterprise-wide, data warehouses. A significant limitation of many data warehouses, however, is that they are designed to support only alphanumeric information. In contrast to those traditional designs, the system that we have developed supports automated collection and mining of multimodal data including genomics, digital pathology and radiology images. In this paper, our team describes the design, development and implementation of a multi-modal, Clinical & Research Data Warehouse (CRDW) that is tightly integrated with a suite of computational and machine-learning tools to provide actionable insight into the underlying characteristics of the tumor environment that would not be revealed using standard methods and tools. The System features a flexible Extract, Transform and Load (ETL) interface that enables it to adapt to aggregate data originating from different clinical and research sources depending on the specific EHR and other data sources utilized at a given deployment site.

2.
J Pathol Inform ; 13: 5, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35136672

RESUMO

BACKGROUND: Population-based state cancer registries are an authoritative source for cancer statistics in the United States. They routinely collect a variety of data, including patient demographics, primary tumor site, stage at diagnosis, first course of treatment, and survival, on every cancer case that is reported across all U.S. states and territories. The goal of our project is to enrich NCI's Surveillance, Epidemiology, and End Results (SEER) registry data with high-quality population-based biospecimen data in the form of digital pathology, machine-learning-based classifications, and quantitative histopathology imaging feature sets (referred to here as Pathomics features). MATERIALS AND METHODS: As part of the project, the underlying informatics infrastructure was designed, tested, and implemented through close collaboration with several participating SEER registries to ensure consistency with registry processes, computational scalability, and ability to support creation of population cohorts that span multiple sites. Utilizing computational imaging algorithms and methods to both generate indices and search for matches makes it possible to reduce inter- and intra-observer inconsistencies and to improve the objectivity with which large image repositories are interrogated. RESULTS: Our team has created and continues to expand a well-curated repository of high-quality digitized pathology images corresponding to subjects whose data are routinely collected by the collaborating registries. Our team has systematically deployed and tested key, visual analytic methods to facilitate automated creation of population cohorts for epidemiological studies and tools to support visualization of feature clusters and evaluation of whole-slide images. As part of these efforts, we are developing and optimizing advanced search and matching algorithms to facilitate automated, content-based retrieval of digitized specimens based on their underlying image features and staining characteristics. CONCLUSION: To meet the challenges of this project, we established the analytic pipelines, methods, and workflows to support the expansion and management of a growing repository of high-quality digitized pathology and information-rich, population cohorts containing objective imaging and clinical attributes to facilitate studies that seek to discriminate among different subtypes of disease, stratify patient populations, and perform comparisons of tumor characteristics within and across patient cohorts. We have also successfully developed a suite of tools based on a deep-learning method to perform quantitative characterizations of tumor regions, assess infiltrating lymphocyte distributions, and generate objective nuclear feature measurements. As part of these efforts, our team has implemented reliable methods that enable investigators to systematically search through large repositories to automatically retrieve digitized pathology specimens and correlated clinical data based on their computational signatures.

3.
Int J Comput Assist Radiol Surg ; 16(9): 1537-1548, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34097226

RESUMO

PURPOSE: Ultrasound (US) is the preferred modality for fatty liver disease diagnosis due to its noninvasive, real-time, and cost-effective imaging capabilities. However, traditional B-mode US is qualitative, and therefore, the assessment is very subjective. Computer-aided diagnostic tools can improve the specificity and sensitivity of US and help clinicians to perform uniform diagnoses. METHODS: In this work, we propose a novel deep learning model for nonalcoholic fatty liver disease classification from US data. We design a multi-feature guided multi-scale residual convolutional neural network (CNN) architecture to capture features of different receptive fields. B-mode US images are combined with their corresponding local phase filtered images and radial symmetry transformed images as multi-feature inputs for the network. Various fusion strategies are studied to improve prediction accuracy. We evaluate the designed network architectures on B-mode in vivo liver US images collected from 55 subjects. We also provide quantitative results by comparing our proposed multi-feature CNN architecture against traditional CNN designs and machine learning methods. RESULTS: Quantitative results show an average classification accuracy above 90% over tenfold cross-validation. Our proposed method achieves a 97.8% area under the ROC curve (AUC) for the patient-specific leave-one-out cross-validation (LOOCV) evaluation. Comprehensive validation results further demonstrate that our proposed approaches achieve significant improvements compared to training mono-feature CNN architectures ([Formula: see text]). CONCLUSIONS: Feature combination is valuable for the traditional classification methods, and the use of multi-scale CNN can improve liver classification accuracy. Based on the promising performance, the proposed method has the potential in practical applications to help radiologists diagnose nonalcoholic fatty liver disease.


Assuntos
Hepatopatias , Redes Neurais de Computação , Humanos , Hepatopatias/diagnóstico por imagem , Aprendizado de Máquina , Ultrassonografia
4.
Int J Comput Assist Radiol Surg ; 16(2): 197-206, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33420641

RESUMO

PURPOSE: Recently, the outbreak of the novel coronavirus disease 2019 (COVID-19) pandemic has seriously endangered human health and life. In fighting against COVID-19, effective diagnosis of infected patient is critical for preventing the spread of diseases. Due to limited availability of test kits, the need for auxiliary diagnostic approach has increased. Recent research has shown radiography of COVID-19 patient, such as CT and X-ray, contains salient information about the COVID-19 virus and could be used as an alternative diagnosis method. Chest X-ray (CXR) due to its faster imaging time, wide availability, low cost, and portability gains much attention and becomes very promising. In order to reduce intra- and inter-observer variability, during radiological assessment, computer-aided diagnostic tools have been used in order to supplement medical decision making and subsequent management. Computational methods with high accuracy and robustness are required for rapid triaging of patients and aiding radiologist in the interpretation of the collected data. METHOD: In this study, we design a novel multi-feature convolutional neural network (CNN) architecture for multi-class improved classification of COVID-19 from CXR images. CXR images are enhanced using a local phase-based image enhancement method. The enhanced images, together with the original CXR data, are used as an input to our proposed CNN architecture. Using ablation studies, we show the effectiveness of the enhanced images in improving the diagnostic accuracy. We provide quantitative evaluation on two datasets and qualitative results for visual inspection. Quantitative evaluation is performed on data consisting of 8851 normal (healthy), 6045 pneumonia, and 3323 COVID-19 CXR scans. RESULTS: In Dataset-1, our model achieves 95.57% average accuracy for a three classes classification, 99% precision, recall, and F1-scores for COVID-19 cases. For Dataset-2, we have obtained 94.44% average accuracy, and 95% precision, recall, and F1-scores for detection of COVID-19. CONCLUSIONS: Our proposed multi-feature-guided CNN achieves improved results compared to single-feature CNN proving the importance of the local phase-based CXR image enhancement. Future work will involve further evaluation of the proposed method on a larger-size COVID-19 dataset as they become available.


Assuntos
COVID-19/diagnóstico por imagem , Redes Neurais de Computação , Pneumonia/diagnóstico por imagem , Radiografia Torácica/métodos , Tórax/diagnóstico por imagem , Algoritmos , Aprendizado Profundo , Humanos , Pandemias , Tomografia Computadorizada por Raios X/métodos
5.
Breast Cancer Res Treat ; 185(3): 785-798, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33067778

RESUMO

PURPOSE: Limited epidemiologic data are available on the expression of adipokines leptin (LEP) and adiponectin (ADIPOQ) and adipokine receptors (LEPR, ADIPOR1, ADIPOR2) in the breast tumor microenvironment (TME). The associations of gene expression of these biomarkers with tumor clinicopathology are not well understood. METHODS: NanoString multiplexed assays were used to assess the gene expression levels of LEP, LEPR, ADIPOQ, ADIPOR1, and ADIPOR2 within tumor tissues among 162 Black and 55 White women with newly diagnosed breast cancer. Multivariate mixed effects models were used to estimate associations of gene expression with breast tumor clinicopathology (overall and separately among Blacks). RESULTS: Black race was associated with lower gene expression of LEPR (P = 0.002) and ADIPOR1 (P = 0.01). Lower LEP, LEPR, and ADIPOQ gene expression were associated with higher tumor grade (P = 0.0007, P < 0.0001, and P < 0.0001, respectively) and larger tumor size (P < 0.0001, P = 0.0005, and P < 0.0001, respectively). Lower ADIPOQ expression was associated with ER- status (P = 0.0005), and HER2-enriched (HER2-E; P = 0.0003) and triple-negative (TN; P = 0.002) subtypes. Lower ADIPOR2 expression was associated with Ki67+ status (P = 0.0002), ER- status (P < 0.0001), PR- status (P < 0.0001), and TN subtype (P = 0.0002). Associations of lower adipokine and adipokine receptor gene expression with ER-, HER2-E, and TN subtypes were confirmed using data from The Cancer Genome Atlas (P-values < 0.005). CONCLUSION: These findings suggest that lower expression of ADIPOQ, ADIPOR2, LEP, and LEPR in the breast TME might be indicators of more aggressive breast cancer phenotypes. Validation of these findings are warranted to elucidate the role of the adipokines and adipokine receptors in long-term breast cancer prognosis.


Assuntos
Neoplasias da Mama , Receptores de Adipocina , Adipocinas/genética , Adiponectina/genética , Neoplasias da Mama/genética , Feminino , Expressão Gênica , Humanos , Polimorfismo de Nucleotídeo Único , Receptores para Leptina/genética , Microambiente Tumoral/genética
6.
Breast Cancer Res ; 22(1): 18, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32046756

RESUMO

BACKGROUND: The molecular mechanisms underlying the association between increased adiposity and aggressive breast cancer phenotypes remain unclear, but likely involve the adipokines, leptin (LEP) and adiponectin (ADIPOQ), and their receptors (LEPR, ADIPOR1, ADIPOR2). METHODS: We used immunohistochemistry (IHC) to assess LEP, LEPR, ADIPOQ, ADIPOR1, and ADIPOR2 expression in breast tumor tissue microarrays among a sample of 720 women recently diagnosed with breast cancer (540 of whom self-identified as Black). We scored IHC expression quantitatively, using digital pathology analysis. We abstracted data on tumor grade, tumor size, tumor stage, lymph node status, Ki67, estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) from pathology records, and used ER, PR, and HER2 expression data to classify breast cancer subtype. We used multivariable mixed effects models to estimate associations of IHC expression with tumor clinicopathology, in the overall sample and separately among Blacks. RESULTS: Larger proportions of Black than White women were overweight or obese and had more aggressive tumor features. Older age, Black race, postmenopausal status, and higher body mass index were associated with higher LEPR IHC expression. In multivariable models, lower LEPR IHC expression was associated with ER-negative status and triple-negative subtype (P < 0.0001) in the overall sample and among Black women only. LEP, ADIPOQ, ADIPOR1, and ADIPOR2 IHC expression were not significantly associated with breast tumor clinicopathology. CONCLUSIONS: Lower LEPR IHC expression within the breast tumor microenvironment might contribute mechanistically to inter-individual variation in aggressive breast cancer clinicopathology, particularly ER-negative status and triple-negative subtype.


Assuntos
Adipocinas/metabolismo , Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptores de Adipocina/metabolismo , Receptores para Leptina/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Microambiente Tumoral , Adulto , Negro ou Afro-Americano/estatística & dados numéricos , Idoso , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/classificação , Neoplasias da Mama/patologia , Feminino , Humanos , Imuno-Histoquímica/métodos , Pessoa de Meia-Idade , Gradação de Tumores , Neoplasias de Mama Triplo Negativas/classificação , Neoplasias de Mama Triplo Negativas/patologia , Adulto Jovem
7.
Cell Death Differ ; 27(1): 269-283, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31160716

RESUMO

Multiple endocrine neoplasia type 1 (MEN1) is a genetic syndrome in which patients develop neuroendocrine tumors (NETs), including pancreatic neuroendocrine tumors (PanNETs). The prolonged latency of tumor development in MEN1 patients suggests a likelihood that other mutations cooperate with Men1 to induce PanNETs. We propose that Pten loss combined with Men1 loss accelerates tumorigenesis. To test this, we developed two genetically engineered mouse models (GEMMs)-MPR (Men1flox/flox Ptenflox/flox RIP-Cre) and MPM (Men1flox/flox Ptenflox/flox MIP-Cre) using the Cre-LoxP system with insulin-specific biallelic inactivation of Men1 and Pten. Cre in the MPR mouse model was driven by the transgenic rat insulin 2 promoter while in the MPM mouse model was driven by the knock-in mouse insulin 1 promoter. Both mouse models developed well-differentiated (WD) G1/G2 PanNETs at a much shorter latency than Men1 or Pten single deletion alone and exhibited histopathology of human MEN1-like tumor. The MPR model, additionally, developed pituitary neuroendocrine tumors (PitNETs) in the same mouse at a much shorter latency than Men1 or Pten single deletion alone as well. Our data also demonstrate that Pten plays a role in NE tumorigenesis in pancreas and pituitary. Treatment with the mTOR inhibitor rapamycin delayed the growth of PanNETs in both MPR and MPM mice, as well as the growth of PitNETs, resulting in prolonged survival in MPR mice. Our MPR and MPM mouse models are the first to underscore the cooperative roles of Men1 and Pten in cancer, particularly neuroendocrine cancer. The early onset of WD PanNETs mimicking the human counterpart in MPR and MPM mice at 7 weeks provides an effective platform for evaluating therapeutic opportunities for NETs through targeting the MENIN-mediated and PI3K/AKT/mTOR signaling pathways.


Assuntos
Modelos Animais de Doenças , Camundongos , PTEN Fosfo-Hidrolase/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Animais , Antibióticos Antineoplásicos/uso terapêutico , Carcinogênese , Deleção de Genes , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , PTEN Fosfo-Hidrolase/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas/genética , Sirolimo/uso terapêutico
8.
J Pathol Inform ; 10: 30, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620309

RESUMO

BACKGROUND: Grading of prostatic adenocarcinoma is based on the Gleason scoring system and the more recently established prognostic grade groups. Typically, prostate cancer grading is performed by pathologists based on the morphology of the tumor on hematoxylin and eosin (H and E) slides. In this study, we investigated the histopathological image features with various survival models and attempted to study their correlations. METHODS: Three texture methods (speeded-up robust features, histogram of oriented gradient, and local binary pattern) and two convolutional neural network (CNN)-based methods were applied to quantify histopathological image features. Five survival models were assessed on those image features in the context with other prostate clinical prognostic factors, including primary and secondary Gleason patterns, prostate-specific antigen levels, age, and clinical tumor stages. RESULTS: Based on statistical comparisons among different image features with survival models, image features from CNN-based method with a recurrent neural network called CNN-long-short-term memory provided the highest hazard ratio of prostate cancer recurrence under Cox regression with an elastic net penalty. CONCLUSIONS: This approach outperformed the other image quantification methods listed above. Using this approach, patient outcomes were highly correlated with the histopathological image features of the tissue samples. In future studies, we plan to investigate the potential use of this approach for predicting recurrence in a wider range of cancer types.

9.
Artigo em Inglês | MEDLINE | ID: mdl-31158269

RESUMO

Computational image analysis is one means for evaluating digitized histopathology specimens that can increase the reproducibility and reliability with which cancer diagnoses are rendered while simultaneously providing insight as to the underlying mechanisms of disease onset and progression. A major challenge that is confronted when analyzing samples that have been prepared at disparate laboratories and institutions is that the algorithms used to assess the digitized specimens often exhibit heterogeneous staining characteristics because of slight differences in incubation times and the protocols used to prepare the samples. Unfortunately, such variations can render a prediction model learned from one batch of specimens ineffective for characterizing an ensemble originating from another site. In this work, we propose to adopt unsupervised domain adaptation to effectively transfer the discriminative knowledge obtained from any given source domain to the target domain without requiring any additional labeling or annotation of images at the target site. In this paper, our team investigates the use of two approaches for performing the adaptation: (1) color normalization and (2) adversarial training. The adversarial training strategy is implemented through the use of convolutional neural networks to find an invariant feature space and Siamese architecture within the target domain to add a regularization that is appropriate for the entire set of whole-slide images. The adversarial adaptation results in significant classification improvement compared with the baseline models under a wide range of experimental settings.

10.
Med Image Comput Comput Assist Interv ; 11071: 201-209, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30465047

RESUMO

Automatic and accurate Gleason grading of histopathology tissue slides is crucial for prostate cancer diagnosis, treatment, and prognosis. Usually, histopathology tissue slides from different institutions show heterogeneous appearances because of different tissue preparation and staining procedures, thus the predictable model learned from one domain may not be applicable to a new domain directly. Here we propose to adopt unsupervised domain adaptation to transfer the discriminative knowledge obtained from the source domain to the target domain with-out requiring labeling of images at the target domain. The adaptation is achieved through adversarial training to find an invariant feature space along with the proposed Siamese architecture on the target domain to add a regularization that is appropriate for the whole-slide images. We validate the method on two prostate cancer datasets and obtain significant classification improvement of Gleason scores as compared with the baseline models.

11.
IEEE Trans Biomed Eng ; 65(1): 96-103, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28436838

RESUMO

GOAL: This research aims to validate a new biomarker of breast cancer by introducing electromechanical coupling factor of breast tissue samples as a possible additional indicator of breast cancer. Since collagen fibril exhibits a structural organization that gives rise to a piezoelectric effect, the difference in collagen density between normal and cancerous tissue can be captured by identifying the corresponding electromechanical coupling factor. METHODS: The design of a portable diagnostic tool and a microelectromechanical systems (MEMS)-based biochip, which is integrated with a piezoresistive sensing layer for measuring the reaction force as well as a microheater for temperature control, is introduced. To verify that electromechanical coupling factor can be used as a biomarker for breast cancer, the piezoelectric model for breast tissue is described with preliminary experimental results on five sets of normal and invasive ductal carcinoma (IDC) samples in the 25-45 temperature range. CONCLUSION: While the stiffness of breast tissues can be captured as a representative mechanical signature which allows one to discriminate among tissue types especially in the higher strain region, the electromechanical coupling factor shows more distinct differences between the normal and IDC groups over the entire strain region than the mechanical signature. From the two-sample -test, the electromechanical coupling factor under compression shows statistically significant differences ( 0.0039) between the two groups. SIGNIFICANCE: The increase in collagen density in breast tissue is an objective and reproducible characteristic of breast cancer. Although characterization of mechanical tissue property has been shown to be useful for differentiating cancerous tissue from normal tissue, using a single parameter may not be sufficient for practical usage due to inherent variation among biological samples. The portable breast cancer diagnostic tool reported in this manuscript shows the feasibility of measuring multiple parameters of breast tissue allowing for practical application.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/fisiopatologia , Mama/fisiologia , Eletrodiagnóstico/instrumentação , Eletrodiagnóstico/métodos , Desenho de Equipamento , Feminino , Humanos , Sistemas Microeletromecânicos
12.
Artigo em Inglês | MEDLINE | ID: mdl-30662142

RESUMO

Prostate cancer is the most common non-skin related cancer affecting 1 in 7 men in the United States. Treatment of patients with prostate cancer still remains a difficult decision-making process that requires physicians to balance clinical benefits, life expectancy, comorbidities, and treatment-related side effects. Gleason score (a sum of the primary and secondary Gleason patterns) solely based on morphological prostate glandular architecture has shown as one of the best predictors of prostate cancer outcome. Significant progress has been made on molecular subtyping prostate cancer delineated through the increasing use of gene sequencing. Prostate cancer patients with Gleason score of 7 show heterogeneity in recurrence and survival outcomes. Therefore, we propose to assess the correlation between histopathology images and genomic data with disease recurrence in prostate tumors with a Gleason 7 score to identify prognostic markers. In the study, we identify image biomarkers within tissue WSIs by modeling the spatial relationship from automatically created patches as a sequence within WSI by adopting a recurrence network model, namely long short-term memory (LSTM). Our preliminary results demonstrate that integrating image biomarkers from CNN with LSTM and genomic pathway scores, is more strongly correlated with patients recurrence of disease compared to standard clinical markers and engineered image texture features. The study further demonstrates that prostate cancer patients with Gleason score of 4+3 have a higher risk of disease progression and recurrence compared to prostate cancer patients with Gleason score of 3+4.

13.
J Med Imaging (Bellingham) ; 5(4): 047501, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30840742

RESUMO

Prostate cancer is the most common nonskin-related cancer, affecting one in seven men in the United States. Gleason score, a sum of the primary and secondary Gleason patterns, is one of the best predictors of prostate cancer outcomes. Recently, significant progress has been made in molecular subtyping prostate cancer through the use of genomic sequencing. It has been established that prostate cancer patients presented with a Gleason score 7 show heterogeneity in both disease recurrence and survival. We built a unified system using publicly available whole-slide images and genomic data of histopathology specimens through deep neural networks to identify a set of computational biomarkers. Using a survival model, the experimental results on the public prostate dataset showed that the computational biomarkers extracted by our approach had hazard ratio as 5.73 and C -index as 0.74, which were higher than standard clinical prognostic factors and other engineered image texture features. Collectively, the results of this study highlight the important role of neural network analysis of prostate cancer and the potential of such approaches in other precision medicine applications.

14.
Cancer Inform ; 16: 1176935117694349, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28469389

RESUMO

Leading institutions throughout the country have established Precision Medicine programs to support personalized treatment of patients. A cornerstone for these programs is the establishment of enterprise-wide Clinical Data Warehouses. Working shoulder-to-shoulder, a team of physicians, systems biologists, engineers, and scientists at Rutgers Cancer Institute of New Jersey have designed, developed, and implemented the Warehouse with information originating from data sources, including Electronic Medical Records, Clinical Trial Management Systems, Tumor Registries, Biospecimen Repositories, Radiology and Pathology archives, and Next Generation Sequencing services. Innovative solutions were implemented to detect and extract unstructured clinical information that was embedded in paper/text documents, including synoptic pathology reports. Supporting important precision medicine use cases, the growing Warehouse enables physicians to systematically mine and review the molecular, genomic, image-based, and correlated clinical information of patient tumors individually or as part of large cohorts to identify changes and patterns that may influence treatment decisions and potential outcomes.

15.
IEEE J Biomed Health Inform ; 21(4): 1049-1057, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27323383

RESUMO

Recent advances in digital pathology technology have led to significant improvements in terms of both the quality and resolution of the resulting images, which now often exceed several gigabytes each. Today, several leading institutions across the country utilize whole-slide imaging (WSI) as part of their routine workflow. WSIs have utility in a wide range of diagnostic and investigative pathology applications. The fact that these images are both large in size (about 30 GB when uncompressed) and are generated in nonstandard proprietary formats has limited wider adoption of these technologies and makes the task of accessing, processing, and analyzing them in high-throughput fashion extremely challenging. The common approach for such data analytic applications is to preprocess the large whole-slide images into smaller size files and store them in a generic format. However, this approach limits the advantages that might be realized if different scalability levels and data unit sizes could be dynamically changed based on the specifications of the task at hand and the architectural limits of the infrastructure (e.g., node memory size). Such strategies also introduce extra processing time to the workflow. To address these challenges, we present, in this paper, novel scalable access methods for parallel file systems and distributed file/object storage systems. Experimental results gathered during the course of our studies show that these methods provide opportunities not realizable using traditional approaches. We demonstrate tangible, scalability, and high-throughput advantages using a Lustre parallel file system and AWS S3 distributed storage system.


Assuntos
Algoritmos , Técnicas Histológicas/métodos , Armazenamento e Recuperação da Informação/métodos , Microscopia/métodos , Software , Sistemas de Gerenciamento de Base de Dados , Humanos , Processamento de Imagem Assistida por Computador , Internet
16.
Artigo em Inglês | MEDLINE | ID: mdl-30828124

RESUMO

The Gleason grading system used to render prostate cancer diagnosis has recently been updated to allow more accurate grade stratification and higher prognostic discrimination when compared to the traditional grading system. In spite of progress made in trying to standardize the grading process, there still remains approximately a 30% grading discrepancy between the score rendered by general pathologists and those provided by experts while reviewing needle biopsies for Gleason pattern 3 and 4, which accounts for more than 70% of daily prostate tissue slides at most institutions. We propose a new computational imaging method for Gleason pattern 3 and 4 classification, which better matches the newly established prostate cancer grading system. The computer-aided analysis method includes two phases. First, the boundary of each glandular region is automatically segmented using a deep convolutional neural network. Second, color, shape and texture features are extracted from superpixels corresponding to the outer and inner glandular regions and are subsequently forwarded to a random forest classifier to give a gradient score between 3 and 4 for each delineated glandular region. The F 1 score for glandular segmentation is 0.8460 and the classification accuracy is 0.83±0.03.

17.
Oncotarget ; 7(20): 29689-707, 2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27102439

RESUMO

Receptor tyrosine kinases-based autocrine loops largely contribute to activate the MAPK and PI3K/AKT pathways in melanoma. However, the molecular mechanisms involved in generating these autocrine loops are still largely unknown. In the present study, we examine the role of the transcription factor RUNX2 in the regulation of receptor tyrosine kinase (RTK) expression in melanoma. We have demonstrated that RUNX2-deficient melanoma cells display a significant decrease in three receptor tyrosine kinases, EGFR, IGF-1R and PDGFRß. In addition, we found co-expression of RUNX2 and another RTK, AXL, in both melanoma cells and melanoma patient samples. We observed a decrease in phosphoAKT2 (S474) and phosphoAKT (T308) levels when RUNX2 knock down resulted in significant RTK down regulation. Finally, we showed a dramatic up regulation of RUNX2 expression with concomitant up-regulation of EGFR, IGF-1R and AXL in melanoma cells resistant to the BRAF V600E inhibitor PLX4720. Taken together, our results strongly suggest that RUNX2 might be a key player in RTK-based autocrine loops and a mediator of resistance to BRAF V600E inhibitors involving RTK up regulation in melanoma.


Assuntos
Comunicação Autócrina/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Melanoma/metabolismo , Receptores Proteína Tirosina Quinases/biossíntese , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos
18.
IEEE Trans Biomed Eng ; 63(7): 1347-53, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26930673

RESUMO

GOAL: The objective of this study is to design and develop a portable tool consisting of a disposable biochip for measuring electrothermomechanical (ETM) properties of breast tissue. METHODS: A biochip integrated with a microheater, force sensors, and electrical sensors is fabricated using microtechnology. The sensor covers the area of 2 mm and the biochip is 10 mm in diameter. A portable tool capable of holding tissue and biochip is fabricated using 3-D printing. Invasive ductal carcinoma and normal tissue blocks are selected from cancer tissue bank in Biospecimen Repository Service at Rutgers Cancer Institute of New Jersey. The ETM properties of the normal and cancerous breast tissues (3-mm thickness and 2-mm diameter) are measured by indenting the tissue placed on the biochip integrated inside the 3-D printed tool. RESULTS: Integrating microengineered biochip and 3-D printing, we have developed a portable cancer diagnosis device. Using this device, we have shown a statistically significant difference between cancerous and normal breast tissues in mechanical stiffness, electrical resistivity, and thermal conductivity. CONCLUSION: The developed cancer diagnosis device is capable of simultaneous ETM measurements of breast tissue specimens and can be a potential candidate for delineating normal and cancerous breast tissue cores. SIGNIFICANCE: The portable cancer diagnosis tool could potentially provide a deterministic and quantitative information about the breast tissue characteristics, as well as the onset and disease progression of the tissues. The tool can be potentially used for other tissue-related cancers.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/fisiopatologia , Mama/química , Sistemas Microeletromecânicos/instrumentação , Microtecnologia/instrumentação , Desenho de Equipamento , Feminino , Humanos , Engenharia Tecidual
19.
BMC Bioinformatics ; 16: 399, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627175

RESUMO

BACKGROUND: We describe a suite of tools and methods that form a core set of capabilities for researchers and clinical investigators to evaluate multiple analytical pipelines and quantify sensitivity and variability of the results while conducting large-scale studies in investigative pathology and oncology. The overarching objective of the current investigation is to address the challenges of large data sizes and high computational demands. RESULTS: The proposed tools and methods take advantage of state-of-the-art parallel machines and efficient content-based image searching strategies. The content based image retrieval (CBIR) algorithms can quickly detect and retrieve image patches similar to a query patch using a hierarchical analysis approach. The analysis component based on high performance computing can carry out consensus clustering on 500,000 data points using a large shared memory system. CONCLUSIONS: Our work demonstrates efficient CBIR algorithms and high performance computing can be leveraged for efficient analysis of large microscopy images to meet the challenges of clinically salient applications in pathology. These technologies enable researchers and clinical investigators to make more effective use of the rich informational content contained within digitized microscopy specimens.


Assuntos
Algoritmos , Diagnóstico por Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Armazenamento e Recuperação da Informação , Reconhecimento Automatizado de Padrão , Neoplasias da Próstata/patologia , Análise Serial de Tecidos/instrumentação , Análise por Conglomerados , Humanos , Masculino , Gradação de Tumores
20.
Dis Markers ; 2015: 648495, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26609190

RESUMO

As the most common neoplasm arising from the kidney, renal cell carcinoma (RCC) continues to have a significant impact on global health. Conventional cross-sectional imaging has always served an important role in the staging of RCC. However, with recent advances in imaging techniques and postprocessing analysis, magnetic resonance imaging (MRI) now has the capability to function as a diagnostic, therapeutic, and prognostic biomarker for RCC. For this narrative literature review, a PubMed search was conducted to collect the most relevant and impactful studies from our perspectives as urologic oncologists, radiologists, and computational imaging specialists. We seek to cover advanced MR imaging and image analysis techniques that may improve the management of patients with small renal mass or metastatic renal cell carcinoma.


Assuntos
Carcinoma de Células Renais/diagnóstico , Neoplasias Renais/diagnóstico , Imageamento por Ressonância Magnética/métodos , Carcinoma de Células Renais/terapia , Humanos , Neoplasias Renais/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...